top of page
plarrogpecouprote

Bot Ko2world K25-PK-2.57.rar Full: How to Install and Use the Bot for Ko2world



Thus these electronic device fingerprints are not like the Typewriter Typeface Forensic fingerprints of old that could be used as reasonable evidence in a court. Something that nodoubt will at some point in the future form the basis of yet another forensic evidence scandal as has hair analysis, bullet fragment metallurgical matching, drugs traces in currency etc.




encase forensic v7 crack



Latent fingerprints present a considerable challenge in forensics, and noninvasive procedure that captures a digital image of the latent fingerprints is significant in the field of criminal investigation. The capability of photography technologies using 266nm UV Nd:YAG solid state laser as excitation light source to provide detailed images of unprocessed latent fingerprints is demonstrated. Unprocessed latent fingerprints were developed on various non-absorbent and absorbing substrates. According to the special absorption, reflection, scattering and fluorescence characterization of the various residues in fingerprints (fatty acid ester, protein, and carbosylic acid salts etc) to the UV light to weaken or eliminate the background disturbance and increase the brightness contrast of fingerprints with the background, and using 266nm UV laser as excitation light source, fresh and old latent fingerprints on the surface of four types of non-absorbent objects as magazine cover, glass, back of cellphone, wood desktop paintwork and two types of absorbing objects as manila envelope, notebook paper were noninvasive detected and appeared through reflection photography and fluorescence photography technologies, and the results meet the fingerprint identification requirements in forensic science.


New clinical forensic examination techniques for sexual assaults have not been introduced over the last few decades. We evaluated the benefit of ultraviolet light compared to white light for detecting minor anogenital injuries and scars, following consensual sexual intercourse among adult volunteers. A prospective study comparing female genital findings utilising white and ultraviolet light. A colposcopy with photographic documentation was used. Personal invitation to healthcare students, hospital employees or acquaintances to volunteer for a gynecological examination, with a focus on clinical forensic aspects. Eighty-eight adult female volunteers were recruited for the study. The examination was performed after consensual intercourse. Age ranged from 20 to 52 years (median 26.5 years). Presence of acute findings and scars in the genital area using white and UV-light. Acute genital injury rate was 14.8% under white light colposcopy and 23.0% using UV light. Submucosal hemorrhages in the genital area were documented significantly better under UV-light than white light (14.9% vs. 6.8%; p=0.016), whereas petechiaes (4.5%) and abrasions (2.3%) were detected using either method. UV-light revealed significantly more often delivery-associated genital scars compared to white light (39.8% vs. 31.8%; p=0.016). Furthermore, 10 out of 31 (33.3%) women had no residual anogenital skin or mucosal surface findings, despite a prior episiotomy or rupture of the vaginal outlet wall during delivery, supporting its enormous ability to heal even after major trauma. UV-light may provide additional value for the evaluation of physical findings in clinical forensic examinations after sexual assault, and is especially useful in detecting otherwise invisible early submucosal hemorrhages and scars. Copyright 2014 Elsevier Ireland Ltd. All rights reserved.


The proposed device is capable of counting ultraviolet (UV) photons, is compatible for inclusion into space instruments, and has applications as deep- UV detectors for calibration systems, curing systems, and crack detection. The device is based on a Separate Absorption and Charge Multiplication (SACM) structure. It is based on aluminum gallium nitride (AlGaN) absorber on a silicon carbide APD (avalanche photodiode). The AlGaN layer absorbs incident UV photons and injects photogenerated carriers into an underlying SiC APD that is operated in Geiger mode and provides current multiplication via avalanche breakdown. The solid-state detector is capable of sensing 100-to-365-nanometer wavelength radiation at a flux level as low as 6 photons/pixel/s. Advantages include, visible-light blindness, operation in harsh environments (e.g., high temperatures), deep-UV detection response, high gain, and Geiger mode operation at low voltage. Furthermore, the device can also be designed in array formats, e.g., linear arrays or 2D arrays (micropixels inside a superpixel).


The efficacy of UV disinfection of water depends on the ability of radiation to pass from UV lamps through the quartz sleeves that encase them; the accumulation of metal-containing foulants on sleeve surfaces inhibits disinfection by absorbing radiation that would otherwise be available for inactivation. In a series of experiments, the composition and quantity of sleeve foulants were studied relative to water chemistry and sleeve transmittance. Findings indicate that iron and calcium dominate fouling, with elevated fouling activity by iron, aluminum, manganese, and zinc. A regression-based modeling approach was used to characterize and quantify the effects of foulant metals on UV absorbance. The molar extinction coefficient for iron was found to be more than 3 times greater than that of calcium. Iron's relatively high activity in fouling reactions, elevated capacity to absorb UV, and reduced solubility under oxidizing conditions makes it a fouling precursor of particular concern, with respect to potential for sleeve fouling in UV reactors.


Ultraviolet light-emitting diode (UV LED) adoption is accelerating; they are being used in new applications such as UV curing, germicidal irradiation, nondestructive testing, and forensic analysis. In many of these applications, it is critically important to produce a uniform light distribution and consistent surface irradiance. Flat panes of fused quartz, silica, or glass are commonly used to cover and protect UV LED arrays. However, they don't offer the advantages of an optical lens design. An investigation was conducted to determine the effect of a secondary glass optic on the uniformity of the light distribution and irradiance. Glass optics capable of transmitting UV-A, UV-B, and UV-C wavelengths can improve light distribution, uniformity, and intensity. In this work, two simulation studies were created to illustrate distinct irradiance patterns desirable for potential real world applications. The first study investigates the use of a multi-UV LED array and optic to create a uniform irradiance pattern on the flat two dimensional (2D) target surface. The uniformity was improved by designing both the LED array and molded optic to produce a homogenous pattern. The second study investigated the use of an LED light source and molded optic to improve the light uniformity on the inside of a canister. The case study illustrates the requirements for careful selection of LED based on light distribution and subsequent design of optics. The optic utilizes total internal reflection to create optimized light distribution. The combination of the LED and molded optic showed significant improvement in uniformity on the inner surface of the canister. The simulations illustrate how the application of optics can significantly improve UV light distribution which can be critical in applications such as UV curing and sterilization. 2ff7e9595c


0 views0 comments

Recent Posts

See All

Comments


bottom of page